超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(二)

简介: 超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(二)

4 MicroNet架构


文中总共描述了4种MicroNet模型的结构,FLOPs在6M到44M之间。它们由3种类型的Block组成,它们以不同的方式结合了Micro-Factorized pointwise和depthwise卷积。它们都使用dynamic ShiftMax作为激活函数。

image.png

4.1、Micro-Block-A

Micro-Block-A使用了微分解点态和深度卷积的精简组合。它在分辨率较高的低电平上是有效的。请注意,信道的数量是通过深度上的微分解卷积来扩展的,而通过组自适应卷积来压缩的。

4.2、Micro-Block-B

Micro-Block-B用于连接MicroBlock-A和Micro-Block-C。与Micro-Block-A不同的是,它使用了完全Micro-Factorized pointwise卷积,其中包括两个Group自适应卷积。前者压缩了通道数量,而后者则增加了通道数量。

4.3、Micro-Block-C

Micro-Block-C使用常规组合,将深度上的Micro-Factorized pointwise卷积连接起来。它被用于更深处的位置,因为它在通道融合(pointwise)上比lite组合花费更多的计算。当维度匹配时使用跳接。

每个微块有四个超参数:核大小k、输出通道数C、Micro-Factorized pointwise瓶颈处的缩减比R、2个Group自适应卷积的Group数对(G1,G2)。

4.4、Stem Layer

作者重新设计了Stem层,以满足低FLOPs的约束。它包括一个的卷积和一个的群卷积,然后是一个ReLU。第2次卷积将通道的数量增加了R倍。这大大节省了计算成本。


5 实验


5.1、ImageNet分类结果

下表2比较了4种不同的计算代价下最先进的ImgageNet分类。在这4个结果中MicroNet性能优于以前的工作。

5.2、激活函数实验

5.3、Pixel-Level分类

5.3.1 COCO keypoint detection

5.3.2 Semantic segmentation

参考

[1] MicroNet: Towards Image Recognition with Extremely Low FLOPs

相关实践学习
基于函数计算实现AI推理
本场景基于函数计算建立一个TensorFlow Serverless AI推理平台。
相关文章
|
机器学习/深度学习 编解码 算法
超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(一)
超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(一)
193 0
|
机器学习/深度学习 编解码 计算机视觉
ICCV2021 | MicroNet:以极低的 FLOPs 改进图像识别
这篇论文旨在以极低的计算成本解决性能大幅下降的问题。提出了微分解卷积,将卷积矩阵分解为低秩矩阵,将稀疏连接整合到卷积中。提出了一个新的动态激活函数-- Dynamic Shift Max,通过最大化输入特征图与其循环通道移位之间的多个动态融合来改善非线性。
ICCV2021 | MicroNet:以极低的 FLOPs 改进图像识别
|
1天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【5月更文挑战第18天】 随着深度学习技术的迅速发展,其在图像识别领域的应用已经取得了显著的成果。本文将探讨深度学习在图像识别中的关键作用,分析其技术实现的基本原理,并讨论当前面临的主要挑战以及未来的发展趋势。我们将重点介绍卷积神经网络(CNN)的结构与优化策略,同时对比不同深度学习模型的性能表现,并提出针对性的改进方法。通过实验结果的分析,本文旨在为图像识别技术的进步提供理论支持和实践指导。
|
1天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶领域的应用
【5月更文挑战第18天】随着科技的发展,深度学习技术在各个领域的应用越来越广泛。特别是在自动驾驶领域,基于深度学习的图像识别技术已经成为了关键技术之一。本文将详细介绍基于深度学习的图像识别技术在自动驾驶领域的应用,包括其原理、实现方法以及面临的挑战和未来发展趋势。
20 5
|
1天前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用与挑战
【5月更文挑战第18天】 随着人工智能技术的飞速发展,深度学习作为其核心推动力之一,在图像识别领域取得了显著的成就。本文将探讨深度学习技术在图像识别任务中的运用,重点分析卷积神经网络(CNN)的结构和优化策略,以及在实际应用中所面临的主要挑战,如模型泛化能力、数据不平衡和对抗性攻击等。通过综合现有文献和最新研究成果,本文旨在为读者提供一个关于深度学习在图像识别领域的应用现状和未来趋势的全面视角。
|
1天前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第18天】 随着人工智能技术的飞速发展,特别是深度学习在图像识别领域的突破性进展,自动驾驶技术已经从科幻走向现实。本文旨在探讨如何将基于深度学习的图像识别技术集成到自动驾驶系统中,以提升车辆的环境感知能力、决策效率及安全性。文中不仅回顾了当前自动驾驶中图像识别的关键挑战,还介绍了几种前沿的深度学习模型及其在处理复杂交通场景下的有效性。此外,本文还将讨论数据预处理、增强技术以及模型优化策略对提高自动驾驶系统性能的重要性。
|
1天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的创新应用
【5月更文挑战第18天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉进步的核心动力。尤其在图像识别领域,通过构建和训练复杂的神经网络模型,深度学习技术能够实现对图像内容的高效准确识别。本文将探讨深度学习在图像识别中的最新应用,分析其背后的关键技术,并展望未来的发展趋势。我们将重点讨论卷积神经网络(CNN)的优化策略、数据增强的重要性以及迁移学习的实践案例,旨在为读者提供一个关于如何利用深度学习技术提升图像识别性能的全面视角。
|
1天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用进展
【5月更文挑战第18天】 随着计算机视觉技术的飞速发展,深度学习已成为图像识别任务的核心动力。本文综述了深度学习技术在图像识别领域的最新进展,包括卷积神经网络(CNN)的变种结构、迁移学习策略以及增强学习机制。通过分析现有文献和研究成果,本文揭示了深度学习模型在处理复杂图像数据时的优势和挑战,并提出了未来研究的潜在方向。
|
2天前
|
机器学习/深度学习 算法 数据可视化
深度学习在图像识别中的应用及其挑战
【5月更文挑战第17天】随着科技的发展,深度学习已经在各个领域中得到了广泛的应用,其中图像识别是其最为重要的应用领域之一。本文将探讨深度学习在图像识别中的应用,以及在实际应用中面临的挑战和解决方案。
|
2天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
【5月更文挑战第17天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉领域革新的核心技术之一。特别是在图像识别任务中,深度神经网络通过模拟人脑对视觉信息的处理机制,显著提高了识别精度和处理速度。本文聚焦于深度学习在图像识别领域的应用现状,探讨了其背后的关键技术,包括卷积神经网络(CNN)的变体、数据增强、迁移学习以及注意力机制等。同时,文章也分析了当前面临的主要挑战,如数据集偏差、模型泛化能力、计算资源需求及对抗性攻击等,并提出了可能的解决方案。
http://www.vxiaotou.com