基于PyTorch、易上手,细粒度图像识别深度学习工具库Hawkeye开源

简介: 基于PyTorch、易上手,细粒度图像识别深度学习工具库Hawkeye开源

机器之心编辑部细粒度图像识别 [1] 是视觉感知学习的重要研究课题,在智能新经济和工业互联网等方面具有巨大应用价值,且在诸多现实场景已有广泛应用…… 鉴于当前领域内尚缺乏该方面的深度学习开源工具库,南京理工大学魏秀参教授团队用时近一年时间,开发、打磨、完成了 Hawkeye——细粒度图像识别深度学习开源工具库,供相关领域研究人员和工程师参考使用。本文是对 Hawkeye 的详细介绍。


目录


1. 什么是 Hawkeye 库

2. Hawkeye 支持的模型及方法

3. 安装 Hawkeye

4. 使用 Hawkeye 训练模型


1. 什么是 Hawkeye 库



Hawkeye 是一个基于 PyTorch 的细粒度图像识别深度学习工具库,专为相关领域研究人员和工程师设计。目前,Hawkeye 包含多种代表性范式的细粒度识别方法,包括 “基于深度滤波器”、“基于注意力机制”、“基于高阶特征交互”、“基于特殊损失函数”、“基于网络数据” 以及其他方法。


Hawkeye 项目代码风格良好,结构清晰易读,可拓展性较强。对于刚接触细粒度图像识别领域的相关人员而言,Hawkeye 较易上手,便于其理解细粒度图像识别的主要流程和代表性方法,同时也方便在本工具库上快速实现自己的算法。此外,我们还给出了库中各模型的训练示例代码,自研方法也可按照示例快速适配并添加至 Hawkeye 中。


Hawkeye 开源库链接:https://github.com/Hawkeye-FineGrained/Hawkeye


2. Hawkeye 支持的模型及方法


Hawkeye 目前支持细粒度图像识别中主要学习范式的共 16 个模型与方法,具体如下:


  • 基于深度滤波器
  • S3N (ICCV 2019)
  • Interp-Parts (CVPR 2020)
  • ProtoTree (CVPR 2021)
  • 基于注意力机制
  • OSME+MAMC (ECCV 2018)
  • MGE-CNN (ICCV 2019)
  • APCNN (IEEE TIP 2021)
  • 基于高阶特征交互
  • BCNN (ICCV 2015)
  • CBCNN (CVPR 2016)
  • Fast MPN-COV (CVPR 2018)
  • 基于特殊损失函数
  • Pairwise Confusion (ECCV 2018)
  • API-Net (AAAI 2020)
  • CIN (AAAI 2020)
  • 基于网络数据
  • Peer-Learning (ICCV 2021)
  • 其他方法
  • NTS-Net (ECCV 2018)
  • CrossX (ICCV 2019)
  • DCL (CVPR 2019)


3. 安装 Hawkeye


安装依赖


使用 conda 或者 pip 安装相关依赖:


  • Python 3.8
  • PyTorch 1.11.0 or higher
  • torchvison 0.12.0 or higher
  • numpy
  • yacs
  • tqdm


克隆仓库:




git clone https://github.com/Hawkeye-FineGrained/Hawkeye.gitcd Hawkeye


准备数据集


我们提供了 8 个常用的细粒度识别数据集及最新的下载链接:


首先,下载一个数据集(以 CUB200 为例):





cd Hawkeye/datawget https://data.caltech.edu/records/65de6-vp158/files/CUB_200_2011.tgzmkdir bird && tar -xvf CUB_200_2011.tgz -C bird/


我们提供了上述 8 个数据集的 meta-data 文件,能够匹配库中的 FGDataset 方便地加载训练集和测试集,训练集和测试集为各个数据集官方提供的划分。使用不同数据集时,只需在实验的 config 文件中修改 dataset 配置即可,方便切换。


在实验的 config 文件中修改 dataset 配置,示例如下:






dataset:  name: cub  root_dir: data/bird/CUB_200_2011/images  meta_dir: metadata/cub


4. 使用 Hawkeye 训练模型


对于 Hawkeye 支持的每个方法,我们均提供了单独的训练模板和配置文件。例如训练 APINet 只需一条命令:



python Examples/APINet.py --config configs/APINet.yaml

实验的参数都在相应的 yaml 文件中,可读性高、便于修改,如:



experiment:name: API_res101 2        # 实验名称  log_dir: results/APINet   # 实验日志、结果等的输出目录  seed: 42                  # 可以选择固定的随机数种子#  resume: results/APINet/API_res101 2/checkpoint_epoch_19.pth    # 可以从训练中断的 checkpoint 中恢复训练dataset:  name: cub          # 使用 CUB200 数据集  root_dir: data/bird/CUB_200_2011/images   # 数据集中图像放置的路径  meta_dir: metadata/cub                  # CUB200 的 metadata 路径  n_classes: 10         # 类别数,APINet 需要的数据集  n_samples: 4          # 每个类别的样本数  batch_size: 24        # 测试时的批样本数  num_workers: 4      # Dataloader 加载数据集的线程数  transformer:        # 数据增强的参数配置    image_size: 224      # 图像输入模型的尺寸 224x224    resize_size: 256    # 图像增强前缩放的尺寸 256x256model:  name: APINet        # 使用 APINet 模型,见 `model/methods/APINet.py`  num_classes: 200      # 类别数目#  load: results/APINet/API_res101 1/best_model.pth     # 可以加载训练过的模型参数train:  cuda: [4]          # 使用的 GPU 设备 ID 列表,[] 时使用 CPU  epoch: 100        # 训练的 epoch 数量  save_frequence: 10    # 自动保存模型的频率#  val_first: False      # 可选是否在训练前进行一次模型精度的测试  optimizer:    name: Adam        # 使用 Adam 优化器    lr: 0.0001        # 学习率为 0.0001    weight_decay: 0.00000002  scheduler:    # 本例使用自定义组合的 scheduler,由 warmup 和余弦退火学习率组合而成,见 `Examples/APINet.py`    name: ''    T_max: 100        # scheduler 的总迭代次数    warmup_epochs: 8    # warmup 的 epoch 数    lr_warmup_decay: 0.01  # warmup 衰减的比例  criterion:    name: APINetLoss    # APINet 使用的损失函数,见 `model/loss/APINet_loss.py`

实验的主程序 Examples/APINet.py 中的训练器 APINetTrainer 继承自 Trainer,不需要再写复杂的训练流程、logger、模型保存、配置加载等代码,只用按需修改部分模块即可。我们也提供了训练阶段的多个 hook 钩子,可以满足一些方法特别的实现方式。

日志文件、模型权重文件、训练使用的训练代码以及当时的配置文件都会保存在实验输出目录 log_dir 中,备份配置和训练代码便于日后对不同实验进行对比。


更多详细示例可参考项目链接中的具体信息:https://github.com/Hawkeye-FineGrained/Hawkeye


参考

[1] X.-S. Wei, Y.-Z. Song, O. Mac Aodha, J. Wu, Y. Peng, J. Tang, J. Yang, and S. Belongie. Fine-Grained Image Analysis with Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), DOI: 10.1109/TPAMI.2021.3126648. https://ieeexplore.ieee.org/document/9609630

相关实践学习
基于函数计算实现AI推理
本场景基于函数计算建立一个TensorFlow Serverless AI推理平台。
相关文章
|
1天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【5月更文挑战第18天】 随着深度学习技术的迅速发展,其在图像识别领域的应用已经取得了显著的成果。本文将探讨深度学习在图像识别中的关键作用,分析其技术实现的基本原理,并讨论当前面临的主要挑战以及未来的发展趋势。我们将重点介绍卷积神经网络(CNN)的结构与优化策略,同时对比不同深度学习模型的性能表现,并提出针对性的改进方法。通过实验结果的分析,本文旨在为图像识别技术的进步提供理论支持和实践指导。
|
1天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶领域的应用
【5月更文挑战第18天】随着科技的发展,深度学习技术在各个领域的应用越来越广泛。特别是在自动驾驶领域,基于深度学习的图像识别技术已经成为了关键技术之一。本文将详细介绍基于深度学习的图像识别技术在自动驾驶领域的应用,包括其原理、实现方法以及面临的挑战和未来发展趋势。
20 5
|
1天前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用与挑战
【5月更文挑战第18天】 随着人工智能技术的飞速发展,深度学习作为其核心推动力之一,在图像识别领域取得了显著的成就。本文将探讨深度学习技术在图像识别任务中的运用,重点分析卷积神经网络(CNN)的结构和优化策略,以及在实际应用中所面临的主要挑战,如模型泛化能力、数据不平衡和对抗性攻击等。通过综合现有文献和最新研究成果,本文旨在为读者提供一个关于深度学习在图像识别领域的应用现状和未来趋势的全面视角。
|
1天前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第18天】 随着人工智能技术的飞速发展,特别是深度学习在图像识别领域的突破性进展,自动驾驶技术已经从科幻走向现实。本文旨在探讨如何将基于深度学习的图像识别技术集成到自动驾驶系统中,以提升车辆的环境感知能力、决策效率及安全性。文中不仅回顾了当前自动驾驶中图像识别的关键挑战,还介绍了几种前沿的深度学习模型及其在处理复杂交通场景下的有效性。此外,本文还将讨论数据预处理、增强技术以及模型优化策略对提高自动驾驶系统性能的重要性。
|
1天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的创新应用
【5月更文挑战第18天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉进步的核心动力。尤其在图像识别领域,通过构建和训练复杂的神经网络模型,深度学习技术能够实现对图像内容的高效准确识别。本文将探讨深度学习在图像识别中的最新应用,分析其背后的关键技术,并展望未来的发展趋势。我们将重点讨论卷积神经网络(CNN)的优化策略、数据增强的重要性以及迁移学习的实践案例,旨在为读者提供一个关于如何利用深度学习技术提升图像识别性能的全面视角。
|
1天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用进展
【5月更文挑战第18天】 随着计算机视觉技术的飞速发展,深度学习已成为图像识别任务的核心动力。本文综述了深度学习技术在图像识别领域的最新进展,包括卷积神经网络(CNN)的变种结构、迁移学习策略以及增强学习机制。通过分析现有文献和研究成果,本文揭示了深度学习模型在处理复杂图像数据时的优势和挑战,并提出了未来研究的潜在方向。
|
2天前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习:Pytorch 与 Tensorflow 的主要区别(2)
深度学习:Pytorch 与 Tensorflow 的主要区别(2)
7 0
|
2天前
|
机器学习/深度学习 算法 数据可视化
深度学习在图像识别中的应用及其挑战
【5月更文挑战第17天】随着科技的发展,深度学习已经在各个领域中得到了广泛的应用,其中图像识别是其最为重要的应用领域之一。本文将探讨深度学习在图像识别中的应用,以及在实际应用中面临的挑战和解决方案。
|
2天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
【5月更文挑战第17天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉领域革新的核心技术之一。特别是在图像识别任务中,深度神经网络通过模拟人脑对视觉信息的处理机制,显著提高了识别精度和处理速度。本文聚焦于深度学习在图像识别领域的应用现状,探讨了其背后的关键技术,包括卷积神经网络(CNN)的变体、数据增强、迁移学习以及注意力机制等。同时,文章也分析了当前面临的主要挑战,如数据集偏差、模型泛化能力、计算资源需求及对抗性攻击等,并提出了可能的解决方案。
|
2天前
|
机器学习/深度学习 人工智能 自动驾驶
探索基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第17天】 随着人工智能技术的飞速发展,尤其是深度学习在图像处理和识别领域的突破性进展,自动驾驶汽车的研发与实现已逐渐成为可能。本文旨在探讨深度学习技术在图像识别中的关键作用,并分析其在自动驾驶系统中的具体应用。通过回顾卷积神经网络(CNN)的基本结构和工作原理,本文阐述了深度学习模型如何从大量数据中学习特征,并在复杂的道路环境中准确识别行人、车辆、交通标志等关键要素。此外,文章还讨论了深度学习技术在提高自动驾驶安全性方面的潜力及面临的挑战。
http://www.vxiaotou.com