【分布式技术专题】「架构实践于案例分析」总结和盘点目前常用分布式事务特别及问题分析(上)

简介: 【分布式技术专题】「架构实践于案例分析」总结和盘点目前常用分布式事务特别及问题分析(上)

分布式事务


分布式事务的场景

什么场景下会出现分布式事务?



TX协议


?种分布式事务协议,包含?阶段提交(2PC),三阶段提交(3PC)两种实现。


二阶段提交方案:强一致性


事务的发起者称协调者,事务的执行者称参与者。


处理流程:


  • 准备阶段


  1. 事务协调者,向所有事务参与者发送事务内容,询问是否可以提交事务,并等待参与者回复。
  2. 事务参与者收到事务内容,开始执行事务操作,将undo和redo信息记入事务日志中(但此时并不提交事务)。
  3. 如果参与者执行成功,给协调者回复yes,表示可以进行事务提交。如果执行失败,给协调者回复no,表示不可提交。



注意:必须在最后阶段释放锁资源,接下来分两种情况分别讨论提交阶段的过程。


  • 所有参与者均反馈 yes,提交事务
  1. 协调者向所有参与者发出正式提交事务的请求(即 commit 请求)。
  2. 参与者执行 commit 请求,并释放整个事务期间占用的资源。
  3. 各参与者向协调者反馈 ack(应答)完成的消息。
  4. 协调者收到所有参与者反馈的 ack 消息后,即完成事务提交。



如果协调者收到了参与者的失败消息或者超时,直接给每个参与者发送回滚(rollback)消息;否则,发送提交(commit)消息。

image.png

image.png


  • 当任何阶段 1 一个参与者反馈 no,中断事务。


  1. 协调者向所有参与者发出回滚请求(即 rollback 请求)。
  2. 参与者使用阶段 1 中的 undo 信息执行回滚操作,并释放整个事务期间占用的资源。
  3. 各参与者向协调者反馈 ack 完成的消息。
  4. 协调者收到所有参与者反馈的 ack 消息后,即完成事务中断。

image.png

  • 提交阶段


  1. 如果协调者收到了参与者的失败信息或超时信息,直接给所有参与者发送回滚(rollback)信息进行事务回滚,否则,发送提交(commit)信息。
  2. 参与者根据协调者的指令执行提交或者回滚操作,释放所有事务处理过程中使用的锁资源。(注意:必须在最后阶段释放锁资源) 接下来分两种情况分别讨论提交阶段的过程。


image.png

数据一致性问题:在阶段 2 中,如果发生局部网络问题,一部分事务参与者收到了提交消息,另一部分事务参与者没收到提交消息,那么就导致了节点之间数据的不一致。



XA优缺点分析


2PC 方案实现起来简单,实际项目中使用比较少,主要因为以下问题



优点


  • 关系型数据库普遍?持XA协议
  • 使?基于XA协议的分布式事务技术成本较低


缺点


  • 性能较差:所有参与者在事务提交阶段处于同步阻塞状态,占用系统资源,容易导致性能瓶颈。
  • ?法满??并发场景:如果协调者存在单点故障问题,如果协调者出现故障,参与者将一直处于锁定状态。



三阶段提交方案:强一致性


三阶段提交是在二阶段提交上的改进版本,主要是加入了超时机制。同时在协调者和参与者中都引入超时机制。


三阶段将二阶段的准备阶段拆分为2个阶段,插入了一个preCommit阶段,以此来处理原先二阶段,参与者准备后,参与者发生崩溃或错误,导致参与者无法知晓是否提交或回滚的不确定状态所引起的延时问题。


处理流程


  • 阶段 1:canCommit


  1. 协调者向参与者发送commit请求,参与者如果可以提交就返回 yes 响应(参与者不执行事务操作),否则返回 no 响应:
  2. 协调者向所有参与者发出包含事务内容的 canCommit 请求,询问是否可以提交事务,并等待所有参与者答复。
  3. 参与者收到 canCommit 请求后,如果认为可以执行事务操作,则反馈 yes 并进入预备状态,否则反馈 no。


  • 阶段 2:preCommit

  1. 协调者根据阶段 1 canCommit 参与者的反应情况来决定是否可以进行基于事务的 preCommit 操作。根据响应情况,有以下两种可能。


  • 情况 1:阶段 1 所有参与者均反馈 yes,参与者预执行事务:


  1. 协调者向所有参与者发出 preCommit 请求,进入准备阶段。
  2. 参与者收到 preCommit 请求后,执行事务操作,将 undo 和 redo 信息记入事务日志中(但不提交事务)。
  3. 各参与者向协调者反馈 ack 响应或 no 响应,并等待最终指令。

image.png

image.png

  • 情况 2:阶段 1 任何一个参与者反馈 no,或者等待超时后协调者尚无法收到所有参与者的反馈,即中断事务,如上图:


  1. 协调者向所有参与者发出 abort 请求。
  2. 无论收到协调者发出的 abort 请求,或者在等待协调者请求过程中出现超时,参与者均会中断事务。

image.png

image.png

  • 阶段 3:do Commit

该阶段进行真正的事务提交,也可以分为以下两种情况。

image.png

  • 如果协调者处于工作状态,则向所有参与者发出 do Commit 请求。


  • 参与者收到 do Commit 请求后,会正式执行事务提交,并释放整个事务期间占用的资源。


  • 各参与者向协调者反馈 ack 完成的消息。


  • 协调者收到所有参与者反馈的 ack 消息后,即完成事务提交。


阶段 2 任何一个参与者反馈 no,或者等待超时后协调者尚无法收到所有参与者的反馈,即中断事务。

image.png

  • 如果协调者处于工作状态,向所有参与者发出 abort 请求。


  • 参与者使用阶段 1 中的 undo 信息执行回滚操作,并释放整个事务期间占用的资源。


  • 各参与者向协调者反馈 ack 完成的消息。


  • 协调者收到所有参与者反馈的 ack 消息后,即完成事务中断。



注意:进入阶段 3 后,无论协调者出现问题,或者协调者与参与者网络出现问题,都会导致参与者无法接收到协调者发出的 do Commit 请求或 abort 请求。此时,参与者都会在等待超时之后,继续执行事务提交。



方案总结


  • 优点:相比二阶段提交,三阶段提交降低了阻塞范围,在等待超时后协调者或参与者会中断事务。避免了协调者单点问题,阶段3中协调者出现问题时,参与者会继续提交事务。


  • 缺点:数据不一致问题依然存在,当在参与者收到 preCommit 请求后等待 do commite 指令时,此时如果协调者请求中断事务,而协调者无法与参与者正常通信,会导致参与者继续提交事务,造成数据不一致。



TCC 事务:最终一致性


方案简介


TCC(Try-Confirm-Cancel)的概念,最早是由 Pat Helland 于 2007 年发表的一篇名为《Life beyond Distributed Transactions:an Apostate’s Opinion》的论文提出。


TCC 是服务化的二阶段编程模型,其 Try、Confirm、Cancel 3 个方法均由业务编码实现:


  • Try 操作作为一阶段,负责资源的检查和预留。
  • Confirm 操作作为二阶段提交操作,执行真正的业务。
  • Cancel 是预留资源的取消。


TCC 事务的 Try、Confirm、Cancel 可以理解为 SQL 事务中的 Lock、Commit、Rollback。




处理流程


Try 阶段


从执行阶段来看,与传统事务机制中业务逻辑相同。但从业务角度来看,却不一样。TCC 机制中的 Try 仅是一个初步操作,它和后续的确认一起才能真正构成一个完整的业务逻辑,这个阶段主要完成:


  • 完成所有业务检查( 一致性 ) 。
  • 预留必须业务资源( 准隔离性 ) 。
  • Try 尝试执行业务。


TCC 事务机制以初步操作(Try)为中心的,确认操作(Confirm)和取消操作(Cancel)都是围绕初步操作(Try)而展开。因此,Try 阶段中的操作,其保障性是最好的,即使失败,仍然有取消操作(Cancel)可以将其执行结果撤销。

image.png

假设商品库存为 100,购买数量为 2,这里检查和更新库存的同时,冻结用户购买数量的库存,同时创建订单,订单状态为待确认。



Confirm / Cancel 阶段


根据 Try 阶段服务是否全部正常执行,继续执行确认操作(Confirm)或取消操作(Cancel)。

Confirm 和 Cancel 操作满足幂等性,如果 Confirm 或 Cancel 操作执行失败,将会不断重试直到执行完成。


Confirm:当 Try 阶段服务全部正常执行, 执行确认业务逻辑操作

image.png

这里使用的资源一定是 Try 阶段预留的业务资源。在 TCC 事务机制中认为,如果在 Try 阶段能正常的预留资源,那 Confirm 一定能完整正确的提交。


Confirm 阶段也可以看成是对 Try 阶段的一个补充,Try+Confirm 一起组成了一个完整的业务逻辑。

Cancel:当 Try 阶段存在服务执行失败, 进入 Cancel 阶段

image.png


方案总结


TCC 事务机制相对于传统事务机制(X/Open XA),TCC 事务机制相比于上面介绍的 XA 事务机制,有以下优点:


  • 性能提升:具体业务来实现控制资源锁的粒度变小,不会锁定整个资源。


  • 数据最终一致性:基于 Confirm 和 Cancel 的幂等性,保证事务最终完成确认或者取消,保证数据的一致性。


  • 可靠性:解决了 XA 协议的协调者单点故障问题,由主业务方发起并控制整个业务活动,业务活动管理器也变成多点,引入集群。


  • 缺点: TCC 的 Try、Confirm 和 Cancel 操作功能要按具体业务来实现,业务耦合度较高,提高了开发成本。




相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
云原生实践公开课
课程大纲 开篇:如何学习并实践云原生技术 基础篇: 5 步上手 Kubernetes 进阶篇:生产环境下的 K8s 实践 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
5天前
|
机器学习/深度学习 存储 人工智能
新一代数据库技术:融合人工智能与分布式系统的未来前景
传统数据库技术在应对大规模数据处理和智能化需求方面逐渐显露出瓶颈。本文探讨了新一代数据库技术的发展趋势,重点关注了人工智能与分布式系统的融合,以及其在未来数据管理和分析中的潜在优势。通过深度学习和自动化技术,新型数据库系统能够实现更高效的数据处理和智能化决策,为企业带来更灵活、可靠的数据解决方案。
|
5天前
|
存储 分布式计算 搜索推荐
【专栏】数据之海,分布式计算、数据存储与管理、数据分析与挖掘成为关键技术
【4月更文挑战第27天】在大数据时代,数据量爆炸性增长、类型多样及处理速度需求提升带来挑战。分布式计算、数据存储与管理、数据分析与挖掘成为关键技术,如Hadoop、Spark、HDFS、NoSQL等。实际应用包括互联网搜索、推荐系统、金融科技、智能城市等领域,大规模数据处理发挥关键作用,持续推动创新与奇迹。
|
1天前
|
监控 数据可视化 Java
【JAVA】分布式链路追踪技术概论
skywalking拥有更加的强大和细粒度的图形监控界面。
12 2
|
2天前
|
前端开发 JavaScript 算法
分布式系统的一致性级别划分及Zookeeper一致性级别分析
分布式系统的一致性级别划分及Zookeeper一致性级别分析
|
5天前
|
存储 供应链 安全
区块链技术原理及应用:深入探索分布式账本技术
【4月更文挑战第30天】区块链,从加密货币的底层技术延伸至多元领域,以其分布式账本、去中心化、不可篡改性及加密技术重塑数据存储与交易。核心组件包括区块、链和节点,应用涵盖加密货币、供应链管理、金融服务等。尽管面临扩展性等挑战,未来潜力无限。
|
5天前
|
数据采集 存储 运维
如何使用SkyWalking收集分析分布式系统的追踪数据
通过以上步骤,你可以使用 SkyWalking 工具实现对分布式系统的数据采集和可视化。SkyWalking 提供了强大的追踪和度量功能,帮助开发者和运维人员更好地理解系统的性能状况。欢迎关注威哥爱编程,一起学习成长。
|
5天前
|
存储 安全 数据管理
新一代数据库技术:融合区块链与分布式存储的未来趋势
传统数据库技术在数据安全性和分布式处理方面存在局限,而新一代数据库技术正日益融合区块链和分布式存储,为数据管理带来革命性变革。本文探讨了这一趋势的发展方向,以及如何利用新技术实现更高效的数据管理与保护。
|
2天前
|
消息中间件 分布式计算 中间件
秀出天际!阿里甩出的988页分布式微服务架构进阶神仙手册我粉了
秀出天际!阿里甩出的988页分布式微服务架构进阶神仙手册我粉了
|
1天前
|
运维 监控 Docker
使用Docker进行微服务架构的部署
【5月更文挑战第18天】本文探讨了如何使用Docker进行微服务架构部署,介绍了Docker的基本概念,如容器化平台和核心组件,以及它与微服务的关系。通过Docker,每个微服务可独立运行在容器中,便于构建、测试和部署。文章详细阐述了使用Docker部署微服务的步骤,包括定义服务、编写Dockerfile、构建镜像、运行容器、配置服务通信、监控和日志管理以及扩展和更新。Docker为微服务提供了可移植、可扩展的解决方案,是现代微服务架构的理想选择。
|
2天前
|
敏捷开发 监控 API
构建高效微服务架构:从理论到实践
【5月更文挑战第18天】 在当今快速发展的软件开发领域,微服务架构已经成为一种流行的设计模式,它通过将大型应用程序分解为一系列小型、独立的服务来提高系统的可伸缩性、弹性和维护性。本文旨在探讨如何从理论走向实践,构建一个高效的微服务架构。文章首先介绍微服务的基本概念和优势,然后详细讨论了在设计和部署微服务时需要考虑的关键因素,包括服务划分、通信机制、数据一致性、容错处理和监控策略。最后,结合具体案例分析,展示如何在现实世界中应用这些原则,确保微服务架构的高效运行。
http://www.vxiaotou.com