NL2SQL进阶系列(1):DB-GPT-Hub、SQLcoder、Text2SQL开源应用实践详解

简介: NL2SQL进阶系列(1):DB-GPT-Hub、SQLcoder、Text2SQL开源应用实践详解

2000元阿里云代金券免费领取,2核4G云服务器仅664元/3年,新老用户都有优惠,立即抢购>>>


阿里云采购季(云主机223元/3年)活动入口:请点击进入>>>,


阿里云学生服务器(9.5元/月)购买入口:请点击进入>>>,

NL2SQL进阶系列(1):DB-GPT-Hub、SQLcoder、Text2SQL开源应用实践详解

NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(Spider vs BIRD)全面对比优劣分析[Text2SQL、Text2DSL]

NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理

1. MindSQL(库)

MindSQL 是一个 Python RAG(检索增强生成)库,旨在仅使用几行代码来简化用户与其数据库之间的交互。 MindSQL 与 PostgreSQL、MySQL、SQLite 等知名数据库无缝集成,还通过扩展核心类,将其功能扩展到 Snowflake、BigQuery 等主流数据库。 该库利用 GPT-4、Llama 2、Google Gemini 等大型语言模型 (LLM),并支持 ChromaDB 和 Fais 等知识库。

官方链接:https://pypi.org/project/mindsql/

https://github.com/Mindinventory/MindSQL

  • 使用案例
    ```

    !pip install mindsql

from mindsql.core import MindSQLCore
from mindsql.databases import Sqlite
from mindsql.llms import GoogleGenAi
from mindsql.vectorstores import ChromaDB

Add Your Configurations

config = {"api_key": "YOUR-API-KEY"}

Choose the Vector Store. LLM and DB You Want to Work With And

Create MindSQLCore Instance With Configured Llm, Vectorstore, And Database

minds = MindSQLCore(
llm=GoogleGenAi(config=config),
vectorstore=ChromaDB(),
database=Sqlite()
)

Create a Database Connection Using The Specified URL

connection = minds.database.create_connection(url="YOUR_DATABASE_CONNECTION_URL")

Index All Data Definition Language (DDL) Statements in The Specified Database Into The Vectorstore

minds.index_all_ddls(connection=connection, db_name='NAME_OF_THE_DB')

Index Question-Sql Pair in Bulk From the Specified Example Path

minds.index(bulk=True, path="your-qsn-sql-example.json")

Ask a Question to The Database And Visualize The Result

response = minds.ask_db(
question="YOUR_QUESTION",
connection=connection,
visualize=True
)

Extract And Display The Chart From The Response

chart = response["chart"]
chart.show()

Close The Connection to Your DB

connection.close()


# 2.DB-GPT-Hub:利用LLMs实现Text-to-SQL微调

DB-GPT-Hub是一个利用LLMs实现Text-to-SQL解析的实验项目,主要包含数据集收集、数据预处理、模型选择与构建和微调权重等步骤,通过这一系列的处理可以在提高Text-to-SQL能力的同时降低模型训练成本,让更多的开发者参与到Text-to-SQL的准确度提升工作当中,最终实现基于数据库的自动问答能力,让用户可以通过自然语言描述完成复杂数据库的查询操作等工作。

## 2.1、数据集

本项目案例数据主要以**Spider**数据集为示例 :
- [Spider](https://yale-lily.github.io/spider): 一个跨域的复杂text2sql数据集,包含了10,181条自然语言问句、分布在200个独立数据库中的5,693条SQL,内容覆盖了138个不同的领域。[下载链接](https://drive.google.com/uc?export=download&id=1TqleXec_OykOYFREKKtschzY29dUcVAQ)

其他数据集:  

- [WikiSQL:](https://github.com/salesforce/WikiSQL) 一个大型的语义解析数据集,由80,654个自然语句表述和24,241张表格的sql标注构成。WikiSQL中每一个问句的查询范围仅限于同一张表,不包含排序、分组、子查询等复杂操作。
- [CHASE](https://xjtu-intsoft.github.io/chase/): 一个跨领域多轮交互text2sql中文数据集,包含5459个多轮问题组成的列表,一共17940个<query, SQL>二元组,涉及280个不同领域的数据库。
- [BIRD-SQL:](https://bird-bench.github.io/)数据集是一个英文的大规模跨领域文本到SQL基准测试,特别关注大型数据库内容。该数据集包含12,751对文本到SQL数据对和95个数据库,总大小为33.4GB,跨越37个职业领域。BIRD-SQL数据集通过探索三个额外的挑战,即处理大规模和混乱的数据库值、外部知识推理和优化SQL执行效率,缩小了文本到SQL研究与实际应用之间的差距。
- [CoSQL:](https://yale-lily.github.io/cosql)是一个用于构建跨域对话文本到sql系统的语料库。它是Spider和SParC任务的对话版本。CoSQL由30k+回合和10k+带注释的SQL查询组成,这些查询来自Wizard-of-Oz的3k个对话集合,查询了跨越138个领域的200个复杂数据库。每个对话都模拟了一个真实的DB查询场景,其中一个工作人员作为用户探索数据库,一个SQL专家使用SQL检索答案,澄清模棱两可的问题,或者以其他方式通知。
- 按照[NSQL](https://github.com/NumbersStationAI/NSQL)的处理模板,对数据集做简单处理,共得到约[20w条训练数据](https://huggingface.co/datasets/Healthy13/Text2SQL/tree/main)



## 2.2、基座模型

DB-GPT-HUB目前已经支持的base模型有:

  - [x] CodeLlama
  - [x] Baichuan2 
  - [x] LLaMa/LLaMa2
  - [x] Falcon
  - [x] Qwen
  - [x] XVERSE
  - [x] ChatGLM2
  - [x] ChatGLM3
  - [x] internlm
  - [x] Falcon
  - [x] sqlcoder-7b(mistral)
  - [x] sqlcoder2-15b(starcoder)



模型可以基于quantization_bit为4的量化微调(QLoRA)所需的最低硬件资源,可以参考如下:

| 模型参数 | GPU RAM | CPU RAM | DISK   |
| -------- | ------- | ------- | ------ |
| 7b       | 6GB     | 3.6GB   | 36.4GB |
| 13b      | 13.4GB  | 5.9GB   | 60.2GB |

其中相关参数均设置的为最小,batch_size为1,max_length为512。根据经验,如果计算资源足够,为了效果更好,建议相关长度值设置为1024或者2048。  

## 2.3 快速使用

* 环境安装

git clone https://github.com/eosphoros-ai/DB-GPT-Hub.git
cd DB-GPT-Hub
conda create -n dbgpt_hub python=3.10
conda activate dbgpt_hub
pip install poetry
poetry install


### 2.3.1 数据预处理

DB-GPT-Hub使用的是信息匹配生成法进行数据准备,即结合表信息的 SQL + Repository 生成方式,这种方式结合了数据表信息,能够更好地理解数据表的结构和关系,适用于生成符合需求的 SQL 语句。 
从[spider数据集链接](https://drive.google.com/uc?export=download&id=1TqleXec_OykOYFREKKtschzY29dUcVAQ) 下载spider数据集,默认将数据下载解压后,放在目录dbgpt_hub/data下面,即路径为`dbgpt_hub/data/spider`。 

数据预处理部分,**只需运行如下脚本**即可:
```bash
##生成train数据 和dev(eval)数据,
poetry run sh dbgpt_hub/scripts/gen_train_eval_data.sh

dbgpt_hub/data/目录你会得到新生成的训练文件example_text2sql_train.json 和测试文件example_text2sql_dev.json ,数据量分别为8659和1034条。 对于后面微调时的数据使用在dbgpt_hub/data/dataset_info.json中将参数file_name值给为训练集的文件名,如example_text2sql_train.json。

生成的json中的数据形如:

    {
        "db_id": "department_management",
        "instruction": "I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.\n\"\n##Instruction:\ndepartment_management contains tables such as department, head, management. Table department has columns such as Department_ID, Name, Creation, Ranking, Budget_in_Billions, Num_Employees. Department_ID is the primary key.\nTable head has columns such as head_ID, name, born_state, age. head_ID is the primary key.\nTable management has columns such as department_ID, head_ID, temporary_acting. department_ID is the primary key.\nThe head_ID of management is the foreign key of head_ID of head.\nThe department_ID of management is the foreign key of Department_ID of department.\n\n",
        "input": "###Input:\nHow many heads of the departments are older than 56 ?\n\n###Response:",
        "output": "SELECT count(*) FROM head WHERE age  >  56",
        "history": []
    },

项目的数据处理代码中已经嵌套了chasecosqlsparc的数据处理,可以根据上面链接将数据集下载到data路径后,在dbgpt_hub/configs/config.py中将 SQL_DATA_INFO中对应的代码注释松开即可。

2.3.2 快速开始

首先,用如下命令安装dbgpt-hub

pip install dbgpt-hub

然后,指定参数并用几行代码完成整个Text2SQL fine-tune流程:

from dbgpt_hub.data_process import preprocess_sft_data
from dbgpt_hub.train import start_sft
from dbgpt_hub.predict import start_predict
from dbgpt_hub.eval import start_evaluate

#配置训练和验证集路径和参数
data_folder = "dbgpt_hub/data"
data_info = [
        {
   
   
            "data_source": "spider",
            "train_file": ["train_spider.json", "train_others.json"],
            "dev_file": ["dev.json"],
            "tables_file": "tables.json",
            "db_id_name": "db_id",
            "is_multiple_turn": False,
            "train_output": "spider_train.json",
            "dev_output": "spider_dev.json",
        }
]

#配置fine-tune参数
train_args = {
   
   
            "model_name_or_path": "codellama/CodeLlama-13b-Instruct-hf",
            "do_train": True,
            "dataset": "example_text2sql_train",
            "max_source_length": 2048,
            "max_target_length": 512,
            "finetuning_type": "lora",
            "lora_target": "q_proj,v_proj",
            "template": "llama2",
            "lora_rank": 64,
            "lora_alpha": 32,
            "output_dir": "dbgpt_hub/output/adapter/CodeLlama-13b-sql-lora",
            "overwrite_cache": True,
            "overwrite_output_dir": True,
            "per_device_train_batch_size": 1,
            "gradient_accumulation_steps": 16,
            "lr_scheduler_type": "cosine_with_restarts",
            "logging_steps": 50,
            "save_steps": 2000,
            "learning_rate": 2e-4,
            "num_train_epochs": 8,
            "plot_loss": True,
            "bf16": True,
}

#配置预测参数
predict_args = {
   
   
            "model_name_or_path": "codellama/CodeLlama-13b-Instruct-hf",
            "template": "llama2",
            "finetuning_type": "lora",
            "checkpoint_dir": "dbgpt_hub/output/adapter/CodeLlama-13b-sql-lora",
            "predict_file_path": "dbgpt_hub/data/eval_data/dev_sql.json",
            "predict_out_dir": "dbgpt_hub/output/",
            "predicted_out_filename": "pred_sql.sql",
}

#配置评估参数
evaluate_args =  {
   
   
            "input": "./dbgpt_hub/output/pred/pred_sql_dev_skeleton.sql",
            "gold": "./dbgpt_hub/data/eval_data/gold.txt",
            "gold_natsql": "./dbgpt_hub/data/eval_data/gold_natsql2sql.txt",
            "db": "./dbgpt_hub/data/spider/database",
            "table": "./dbgpt_hub/data/eval_data/tables.json",
            "table_natsql": "./dbgpt_hub/data/eval_data/tables_for_natsql2sql.json",
            "etype": "exec",
            "plug_value": True,
            "keep_distict": False,
            "progress_bar_for_each_datapoint": False,
            "natsql": False,
}

#执行整个Fine-tune流程
preprocess_sft_data(
      data_folder = data_folder,
      data_info = data_info
)

start_sft(train_args)
start_predict(predict_args)
start_evaluate(evaluate_args)

2.3.3、模型微调

本项目微调不仅能支持QLoRA和LoRA法,还支持deepseed。 可以运行以下命令来微调模型,默认带着参数--quantization_bit为QLoRA的微调方式,如果想要转换为lora的微调,只需在脚本中去掉quantization_bit参数即可。
默认QLoRA微调,运行命令:

poetry run sh dbgpt_hub/scripts/train_sft.sh

微调后的模型权重会默认保存到adapter文件夹下面,即dbgpt_hub/output/adapter目录中。
如果使用多卡训练,想要用deepseed ,则将train_sft.sh中默认的内容进行更改,
调整为:

CUDA_VISIBLE_DEVICES=0 python dbgpt_hub/train/sft_train.py \
    --quantization_bit 4 \
    ...

更改为:

deepspeed --num_gpus 2  dbgpt_hub/train/sft_train.py \
    --deepspeed dbgpt_hub/configs/ds_config.json \
    --quantization_bit 4 \
    ...

如果需要指定对应的显卡id而不是默认的前两个如3,4,可以如下

deepspeed --include localhost:3,4  dbgpt_hub/train/sft_train.py \
    --deepspeed dbgpt_hub/configs/ds_config.json \
    --quantization_bit 4 \
    ...

其他省略(...)的部分均保持一致即可。 如果想要更改默认的deepseed配置,进入 dbgpt_hub/configs 目录,在ds_config.json 更改即可,默认为stage2的策略。

脚本中微调时不同模型对应的关键参数lora_target 和 template,如下表:

模型名 lora_target template
LLaMA-2 q_proj,v_proj llama2
CodeLlama-2 q_proj,v_proj llama2
Baichuan2 W_pack baichuan2
Qwen c_attn chatml
sqlcoder-7b q_proj,v_proj mistral
sqlcoder2-15b c_attn default
InternLM q_proj,v_proj intern
XVERSE q_proj,v_proj xverse
ChatGLM2 query_key_value chatglm2
LLaMA q_proj,v_proj -
BLOOM query_key_value -
BLOOMZ query_key_value -
Baichuan W_pack baichuan
Falcon query_key_value -

train_sft.sh中其他关键参数含义:

quantization_bit:是否量化,取值为[4或者8]
model_name_or_path: LLM模型的路径
dataset: 取值为训练数据集的配置名字,对应在dbgpt_hub/data/dataset_info.json 中外层key值,如example_text2sql。
max_source_length: 输入模型的文本长度,如果计算资源支持,可以尽能设大,如1024或者2048。
max_target_length: 输出模型的sql内容长度,设置为512一般足够。
output_dir : SFT微调时Peft模块输出的路径,默认设置在dbgpt_hub/output/adapter/路径下 。
per_device_train_batch_size : batch的大小,如果计算资源支持,可以设置为更大,默认为1。
gradient_accumulation_steps : 梯度更新的累计steps值
save_steps : 模型保存的ckpt的steps大小值,默认可以设置为100。
num_train_epochs : 训练数据的epoch数

2.3.4、模型预测

项目目录下./dbgpt_hub/下的output/pred/,此文件路径为关于模型预测结果默认输出的位置(如果没有则建上)。
预测运行命令:

poetry run sh ./dbgpt_hub/scripts/predict_sft.sh

脚本中默认带着参数--quantization_bit为QLoRA的预测,去掉即为LoRA的预测方式。
其中参数predicted_input_filename 为要预测的数据集文件, --predicted_out_filename 的值为模型预测的结果文件名。默认结果保存在dbgpt_hub/output/pred目录。

2.3.5、模型权重

可以从Huggingface查看社区上传的第二版Peft模块权重huggingface地址 (202310) ,在spider评估集上的执行准确率达到0.789。

  • 模型和微调权重合并
    如果你需要将训练的基础模型和微调的Peft模块的权重合并,导出一个完整的模型。则运行如下模型导出脚本:
    poetry run sh ./dbgpt_hub/scripts/export_merge.sh
    
    注意将脚本中的相关参数路径值替换为你项目所对应的路径。

2.3.6、模型评估

对于模型在数据集上的效果评估,默认为在spider数据集上。
运行以下命令来:

poetry run python dbgpt_hub/eval/evaluation.py --plug_value --input  Your_model_pred_file

你可以在这里找到最新的评估和实验结果。
注意: 默认的代码中指向的数据库为从Spider官方网站下载的大小为95M的database,如果你需要使用基于Spider的test-suite中的数据库(大小1.27G),请先下载链接中的数据库到自定义目录,并在上述评估命令中增加参数和值,形如--db Your_download_db_path

2.4 小结

整个过程会分为三个阶段:

  • 阶段一:

    • 搭建基本框架,基于数个大模型打通从数据处理、模型SFT训练、预测输出和评估的整个流程
      现在支持
    • [x] CodeLlama
    • [x] Baichuan2
    • [x] LLaMa/LLaMa2
    • [x] Falcon
    • [x] Qwen
    • [x] XVERSE
    • [x] ChatGLM2
    • [x] ChatGLM3
    • [x] internlm
    • [x] sqlcoder-7b(mistral)
    • [x] sqlcoder2-15b(starcoder)
  • 阶段二:

    • [x] 优化模型效果,支持更多不同模型进行不同方式的微调。
    • [x] 对prompt优化
    • [x] 放出评估效果,和优化后的还不错的模型,并且给出复现教程(见微信公众号EosphorosAI)
  • 阶段三:

    • [ ] 推理速度优化提升
    • [ ] 业务场景和中文效果针对性优化提升

3.sqlcoder

官方链接:https://github.com/defog-ai/sqlcoder

Defog组织提出的先进的Text-to-SQL的大模型,表现亮眼,效果优于GPT3.5、wizardcoder和starcoder等,仅次于GPT4。

将每个生成的问题分为6类。该表显示了每个模型正确回答问题的百分比,并按类别进行了细分。

4.modal_finetune_sql

项目基于LLaMa 2 7b模型进行Text-to-SQL微调,有完整的训练、微调、评估流程。

链接:https://github.com/run-llama/modal_finetune_sql

5.LLaMA-Efficient-Tuning

这是一个易于使用的LLM微调框架,支持LLaMA-2、BLOOM、Falcon、Baichuan、Qwen、ChatGLM2等。

链接:https://github.com/hiyouga/LLaMA-Factory/tree/main

  • 多种模型:LLaMA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
  • 集成方法:(增量)预训练、指令监督微调、奖励模型训练、PPO 训练、DPO 训练和 ORPO 训练。
  • 多种精度:32 比特全参数微调、16 比特冻结微调、16 比特 LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8 的 2/4/8 比特 QLoRA 微调。
  • 先进算法:GaLore、DoRA、LongLoRA、LLaMA Pro、LoRA+、LoftQ 和 Agent 微调。
  • 实用技巧:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
  • 实验监控:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
  • 极速推理:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
  • 训练方法
方法 全参数训练 部分参数训练 LoRA QLoRA
预训练 ? ? ? ?
指令监督微调 ? ? ? ?
奖励模型训练 ? ? ? ?
PPO 训练 ? ? ? ?
DPO 训练 ? ? ? ?
ORPO 训练 ? ? ? ?
  • 可视化使用教学

https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd-d76c6d0a6594

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

相关文章
|
1天前
|
存储 监控 安全
RAG-GPT实践过程中遇到的挑战
RAG-GPT实践过程中遇到的挑战
14 0
|
2天前
|
SQL 数据采集 监控
14个Flink SQL性能优化实践分享
本文档详细列举了Apache Flink SQL的性能调优策略。主要关注点包括:增加数据源读取并行度、优化状态管理(如使用RocksDB状态后端并设置清理策略)、调整窗口操作以减少延迟、避免类型转换和不合理的JOIN操作、使用广播JOIN、注意SQL查询复杂度、控制并发度和资源调度、自定义源码实现、执行计划分析、异常检测与恢复、监控报警、数据预处理与清洗、利用高级特性(如容器化部署和UDF)以及数据压缩与序列化。此外,文档还强调了任务并行化、网络传输优化、系统配置调优、数据倾斜处理和任务调度策略。通过这些方法,可以有效解决性能问题,提升Flink SQL的运行效率。
|
5天前
|
SQL 监控 关系型数据库
【PolarDB开源】PolarDB SQL优化实践:提升查询效率与资源利用
【5月更文挑战第24天】PolarDB是高性能的云原生数据库,强调SQL查询优化以提升性能。本文分享了其SQL优化策略,包括查询分析、索引优化、查询重写、批量操作和并行查询,以及性能监控与调优方法。通过这些措施,可以减少响应时间、提高并发处理能力和降低成本。文中还提供了相关示例代码,展示如何分析查询和创建索引,帮助用户实现更高效的数据库管理。
35 1
|
5天前
|
存储 监控 安全
RAG-GPT实践过程中遇到的挑战
大型语言模型如ChatGPT带来了新的人机交互解决方案,但它们在获取最新知识和领域特定信息方面有限。为解决这个问题,有两种方法:微调LLM或使用检索增强生成(RAG)系统。RAG结合了检索机制和LLM的生成能力,从文档中检索相关信息,然后使用LLM生成答案。RAG系统降低了LLM的幻觉,允许关联特定领域知识,并减少了数据处理需求。然而,它也面临挑战,如内容缺失、相关文档检索不足、答案不在上下文中、提取错误和格式问题。RAG的优势在于它可以持续更新知识,但需要优化Chunking和Embedding策略、选择微调还是RAG,以及测试和监控系统。
20 1
RAG-GPT实践过程中遇到的挑战
|
6天前
|
SQL 关系型数据库 数据库
阿里云数据库 RDS SQL Server版实战【性能优化实践、优点探析】
本文探讨了Amazon RDS SQL Server版在云数据库中的优势,包括高可用性、可扩展性、管理便捷、安全性和成本效益。通过多可用区部署和自动备份,RDS确保数据安全和持久性,并支持自动扩展以适应流量波动。可视化管理界面简化了监控和操作,而数据加密和访问控制等功能保障了安全性。此外,弹性计费模式降低了运维成本。实战应用显示,RDS SQL Server版能有效助力企业在促销高峰期稳定系统并保障数据安全。阿里云的RDS SQL Server版还提供了弹性伸缩、自动备份恢复、安全性和高可用性功能,进一步优化性能和成本控制,并与AWS生态系统无缝集成,支持多种开发语言和框架。
38 2
|
7天前
|
SQL 资源调度 监控
Flink SQL性能优化实践
Apache Flink流处理性能优化指南:探索数据源读取并行度、状态管理、窗口操作的优化策略,包括设置默认并行度、使用RocksDB状态后端、调整窗口大小。调优方法涉及数据源分区、JOIN条件优化、使用Broadcast JOIN。注意SQL复杂度、并发控制与资源调度,如启用动态资源分配。源码层面优化自定义Source和Sink,利用执行计划分析性能瓶颈。异常检测与恢复通过启用检查点,监控任务性能。预处理数据、使用DISTINCT去重,结合UDF提高效率。选择高效序列化框架和启用数据压缩,优化网络传输和系统配置。处理数据倾斜,均衡数据分布,动态调整资源和任务优先级,以提升整体性能。
38 2
|
8天前
|
SQL 关系型数据库 MySQL
SQL基础开发与应用-课程及场景介绍
这是一门关于《SQL基础开发与应用》的课程介绍,主要针对数据库Clouder认证的第二阶段。课程以电商平台后端开发为背景,教授RDS for MySQL的SQL基础知识,包括存储过程、触发器和视图等高级特性,并指导学员使用Python进行数据库的增删改查操作。学习目标包括掌握SQL基础操作,了解RDS的高阶功能,并熟悉Python连接RDS进行数据处理。课程采用场景化教学,以跨境电商网站数据库搭建为例,帮助学员理解实际应用。
20 0
|
14天前
|
人工智能
GPT实现开放式世界游戏实践【生化危机】
GPT实现开放式世界游戏实践【生化危机】
16 2
|
14天前
|
JSON 人工智能 机器人
GPTs 应用开发:使用 GPT Builder 创建自己的 GPTs 应用(下)
GPTs 应用开发:使用 GPT Builder 创建自己的 GPTs 应用
39 0
|
14天前
|
人工智能 JSON 自然语言处理
GPTs 应用开发:使用 GPT Builder 创建自己的 GPTs 应用(上)
GPTs 应用开发:使用 GPT Builder 创建自己的 GPTs 应用
47 2
http://www.vxiaotou.com