LC串联谐振拓扑仿真建模

简介: 该文介绍了直流高压电源的应用领域,如高端分析仪器、静电应用等,并重点讲解了其中常用的LC串联谐振拓扑。文章详细阐述了电路设计过程,包括变压器变比、谐振频率等参数的计算,以及如何使用Simulink搭建和仿真电路模型,通过开环和闭环调试验证了输出电压的可控性。

直流高压电源主要应用于高端精密分析仪器、高端医疗分析仪器、静电应用、激光雷达、核探测、惯性导航、雷达通信、电子对抗、高功率脉冲、等离子体推进等行业领域。

LC串联谐振拓扑是直流高压电源中最为常用的拓扑结构。上一期内容中我们对 LC 串联谐振变换器的工作原理进行了分析,今天继续为大家分享 LC 串联谐振变换器的仿真建模及控制策略分析。

根据开关频率 f~ s ~ 与谐振频率 f ~ r ~ 的关系,变换器有三种工作模式,而实际应用时一般工作在 DCM 模式(0< f ~ s ~ < 0.5f ~ r~)。这里我们将对电路参数进行设计,并使用 Simulink 软件搭建LC串联谐振变换器模型,对电路 DCM 模式进行仿真。

一、电路设计

01、电路拓扑设计

LC 串联谐振拓扑包括: 原边 LC 全桥串联谐振电路、变压器和副边整流电路。

副边电路常用的有全桥整流电路以及倍压整流电路,这里以副边整流采用全桥整流电路为例,电路拓扑结构如图所示:

02、电源技术指标设计

?**输入电压 ** v~ in~ 100V(95~105)

?**充电电压 ** v~ o~ **:**1000V

?**充电时间 ** t 1s

?**负载电容 ** c~ d~ 500μF

?**最大工作频率 ** f~ smax~ **:**10kHz

03、器件参数设计

▍变压器变比N设计

V~ omax~

N ~max ~ = ——————

V~ inmin~

V~ omin~

N ~min ~ = ——————

V~ inmax~

这里变压器变比选取 N=10

▍谐振频率设计

电路工作在 DCM 模式下 0<f~ s~<0.5f~ r~,f ~ r ~ = 2f~smax ~= 20kHz

▍谐振电感与谐振电容设计

根据上式可以解得 L ~ r~ =1.1mH,C ~ r~ =6.9μF。

二、电路仿真

01、电路模型搭建

目前,电路仿真软件很多,本次我们采用Matlab中的可视化电路仿真软件包 Simulink 进行电路模型搭建。

Simulink 被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。

接下来就让我们一起进行 LC 串联谐振变换器电路模型搭建。

▍启动 Simulink

打开 Matlab 软件,启动 Simulink;

模块****器件选择

点击“ 模块库浏览器 ”图标进行器件选择。

以直流电压源为例,搜索“Elec trical Sources”,选择“DC Voltagte Source”,拖拽至模型搭建界面;

参数设置

双击器件进行参数设置。

以直流电压源为例,双击电压源图标会弹出参数设置界面,填入输入额定电压值“100”V即可

电路模型

重复上述步骤进行器件选择与参数设置后,按照电路拓扑结构对器件进行连接,得到的LC串联谐振变换器模型如图:

02、开环调试

电路模型搭建完成后,在输入与输出端添加传感器模块,并接入示波器模块中进行波形观察;然后搭建 PWM 波形产生电路并输入至开关器件端。

开环调试电路如图所示:

此处 PWM 控制方式为调频控制,通过改变开关频率达到调节输出电压的目的。

首先设置 PWM 开关频率为 1kHz,占空比为40%,可以看到输出电压幅值在1200V左右;然后设置开关频率为 5kHz,可以观察到输出电压为350V左右。

如此,电路输出电压波形符合预期,且可通过改变开关频率实现输出电压调节,符合电路控制规律。

03、闭环调试

这里闭环采用 PI 控制方式,电路设计如图:

点击“运行”按钮进行拓扑电路的闭环调试,点击波形采集窗口可以观察到输出电压波形如图。

这里设置的闭环输出电压为1000V,可以看到输出电压最终稳定在1000V,符合变换器设计要求。

到这里,LC 串联谐振变换器的电路设计与仿真已经完成了,电源的输出基本符合预期。

相关文章
|
9月前
|
机器学习/深度学习 传感器 数据可视化
基于matlab模拟无线网络拓扑、估计链路质量并可视化拓扑
基于matlab模拟无线网络拓扑、估计链路质量并可视化拓扑
|
16天前
|
算法 异构计算
m基于FPGA的MPPT最大功率跟踪算法verilog实现,包含testbench
该内容包括三部分:1) 展示了Vivado 2019.2和Matlab中关于某种算法的仿真结果图像,可能与太阳能光伏系统的最大功率点跟踪(MPPT)相关。2) 简述了MPPT中的爬山法原理,通过调整光伏电池工作点以找到最大功率输出。3) 提供了一个Verilog程序模块`MPPT_test_tops`,用于测试MPPT算法,其中包含`UI_test`和`MPPT_module_U`两个子模块,处理光伏电流和电压信号。
17 1
|
存储 传感器 定位技术
【NI Multisim 14.0原理图设计基础——元器件分类】
一、元器件分类 NI Multisim 14.0不仅提供了数量众多的元器件符号图形,而且还设计了元器件的模型,并分门类地存储在各个元器件库中。下面按照元器件库的命名不同详细介绍常用的元器件。 1.电源库 单击“元器件”工具栏中的“放置源” 按钮,Sources 库的“系列”栏包括以下几种,如图所示: 电源(POWER-SOURCES):包括常用的交直流电源、数字地、地线、星形或三角形连接的三相电源、VCC、VDD、VEE、VSS 电压源,其元器件”栏下内容如图所示: 电压信号源(SIGNAL-VOLTAG…):包括交流电压、时钟电压、脉冲电压、指数电压、FM、AM等多种形式的电压信号,其“元器
1764 0
【NI Multisim 14.0原理图设计基础——元器件分类】
|
16天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
19 1
|
16天前
|
传感器 数据可视化
LC串联谐振拓扑仿真建模
该文介绍了直流高压电源的应用领域,如高端分析仪器和国防科技,并重点讨论了其中常用的LC串联谐振拓扑结构。文章接着阐述了变换器的三种工作模式,重点关注在DCM模式下的仿真建模。电路设计包括原边和副边电路的详细参数,如电源技术指标、变压器变比、谐振频率等。使用Simulink搭建了LC串联谐振变换器模型,并进行了开环和闭环调试,证明了通过调整开关频率能有效控制输出电压,实现了期望的电源性能。
19 0
|
16天前
|
算法 调度
基于CCG算法的IEEE33配电网两阶段鲁棒优化调度matlab
基于CCG算法的IEEE33配电网两阶段鲁棒优化调度matlab
|
16天前
|
传感器 数据可视化
LC串联谐振拓扑仿真建模及控制策略分析
该文介绍了直流高压电源的应用领域,特别是LC串联谐振拓扑在其中的重要性。文章接着详细阐述了LC串联谐振变换器的工作模式,重点讨论了在DCM模式下的电路参数设计,包括变压器变比、谐振频率和器件参数等,并使用Simulink搭建模型进行电路仿真。仿真过程分为电路模型搭建、开环调试和闭环调试,验证了输出电压可调且能稳定在设定值,实现了变换器的设计目标。
25 2
|
10月前
|
算法
m基于DVB-T的COFDM+16QAM+Viterbi码通信链路matlab性能仿真,包括载波和定时同步,信道估计
m基于DVB-T的COFDM+16QAM+Viterbi码通信链路matlab性能仿真,包括载波和定时同步,信道估计
236 0
|
7月前
串联谐振
串联谐振是指在一个串联电路中,通过合适的电容和电感元件组合,使得电路在某一特定频率下呈现出阻抗最小的现象。在这个频率下,电路的阻抗仅由电容和电感的阻抗组成,而且两者相互抵消,电路呈现为纯电阻。
21 0
|
8月前
|
机器学习/深度学习 传感器 算法
基于Matlab模拟无线网络拓扑、估计链路质量并可视化拓扑
基于Matlab模拟无线网络拓扑、估计链路质量并可视化拓扑
http://www.vxiaotou.com