【Python 机器学习专栏】K-means 聚类算法在 Python 中的实现

简介: 【4月更文挑战第30天】K-means 是一种常见的聚类算法,用于将数据集划分为 K 个簇。其基本流程包括初始化簇中心、分配数据点、更新簇中心并重复此过程直到收敛。在 Python 中实现 K-means 包括数据准备、定义距离函数、初始化、迭代和输出结果。虽然算法简单高效,但它需要预先设定 K 值,且对初始点选择敏感,可能陷入局部最优。广泛应用在市场分析、图像分割等场景。理解原理与实现对应用聚类分析至关重要。

2000元阿里云代金券免费领取,2核4G云服务器仅664元/3年,新老用户都有优惠,立即抢购>>>


阿里云采购季(云主机223元/3年)活动入口:请点击进入>>>,


阿里云学生服务器(9.5元/月)购买入口:请点击进入>>>,

在机器学习领域,聚类分析是一种重要的探索性数据分析方法。K-means 聚类算法是其中一种常用的聚类算法,它简单高效,在许多实际应用中都有广泛的应用。本文将详细介绍 K-means 聚类算法的原理,并展示如何在 Python 中实现该算法。

一、K-means 聚类算法的原理

K-means 聚类算法的基本思想是将数据集划分为 K 个簇,使得每个数据点都属于距离其最近的簇中心。其主要步骤如下:

  1. 初始化:随机选择 K 个数据点作为初始簇中心。
  2. 分配数据点:计算每个数据点到各个簇中心的距离,将数据点分配到距离最近的簇中心所在的簇。
  3. 更新簇中心:根据分配到各个簇的数据点,重新计算簇中心的位置。
  4. 重复步骤 2 和 3:直到簇中心的位置不再发生明显变化或达到预设的迭代次数。

二、K-means 聚类算法的实现步骤

  1. 数据准备:加载数据集并进行必要的预处理。
  2. 定义距离函数:通常使用欧几里得距离来计算数据点之间的距离。
  3. 初始化簇中心:随机选择 K 个数据点作为初始簇中心。
  4. 迭代过程:重复执行分配数据点和更新簇中心的步骤,直到满足停止条件。
  5. 输出结果:得到最终的聚类结果和簇中心。

三、在 Python 中实现 K-means 聚类算法

以下是一个简单的 K-means 聚类算法的 Python 实现示例:

import numpy as np
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

# 生成模拟数据集
X, y = make_blobs(n_samples=500, centers=3, cluster_std=0.6, random_state=0)

# 定义 K-means 聚类算法
def kmeans_clustering(X, K):
    # 初始化簇中心
    centroids = X[np.random.choice(X.shape[0], K, replace=False), :]

    while True:
        # 分配数据点到簇
        distances = np.sqrt(((X - centroids[:, np.newaxis]) ** 2).sum(axis=2))
        labels = np.argmin(distances, axis=0)

        # 更新簇中心
        new_centroids = np.array([X[labels == i].mean(axis=0) for i in range(K)])

        # 检查簇中心是否变化
        if np.allclose(centroids, new_centroids):
            break

        centroids = new_centroids

    return labels, centroids

# 执行 K-means 聚类
K = 3
labels, centroids = kmeans_clustering(X, K)

# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='rainbow')
plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=200, c='black')
plt.show()

四、K-means 聚类算法的优缺点

  1. 优点:简单易懂,计算效率高,对大规模数据集也能较好地处理。
  2. 缺点:需要事先指定簇的数量 K,对初始簇中心敏感,可能会陷入局部最优解。

五、应用场景

K-means 聚类算法广泛应用于市场细分、客户分类、图像分割等领域。通过对数据的聚类分析,可以发现数据中的潜在模式和结构。

六、总结

K-means 聚类算法是一种经典的聚类算法,在 Python 中有多种实现方式。理解其原理和实现过程对于应用聚类分析解决实际问题具有重要意义。在实际应用中,需要根据数据特点和需求选择合适的聚类算法,并结合其他方法进行进一步的分析和处理。

希望本文能为你提供关于 K-means 聚类算法在 Python 中实现的全面认识,助力你在机器学习的探索中取得更好的成果。

相关文章
|
1天前
|
机器学习/深度学习 算法 数据处理
探索机器学习中的决策树算法
【5月更文挑战第18天】探索机器学习中的决策树算法,一种基于树形结构的监督学习,常用于分类和回归。算法通过递归划分数据,选择最优特征以提高子集纯净度。优点包括直观、高效、健壮和可解释,但易过拟合、对连续数据处理不佳且不稳定。广泛应用于信贷风险评估、医疗诊断和商品推荐等领域。优化方法包括集成学习、特征工程、剪枝策略和参数调优。
|
3天前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】K-means算法与PCA算法之间有什么联系?
【5月更文挑战第15天】【机器学习】K-means算法与PCA算法之间有什么联系?
|
3天前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】维度灾难问题会如何影响K-means算法?
【5月更文挑战第15天】【机器学习】维度灾难问题会如何影响K-means算法?
|
4天前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】聚类算法中,如何判断数据是否被“充分”地聚类,以便算法产生有意义的结果?
【5月更文挑战第14天】【机器学习】聚类算法中,如何判断数据是否被“充分”地聚类,以便算法产生有意义的结果?
|
5天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
1天前
|
算法
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
19 9
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
|
3天前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
5天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
5天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
9 1
|
5天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。

热门文章

最新文章

http://www.vxiaotou.com